منابع مشابه
Divisibilty Properties of Gcd Ve Lcm Matrices
Let a, b and n be positive integers and let S = {x1, x2, . . . , xn} be a set of distinct positive integers. The n × n matrix (Sf ) = (f ((xi, xj))), having f evaluated at the greatest common divisor (xi, xj) of xi and xj as its ij−entry, is called the GCD matrix associated with f on the set S. Similarly, the n × n matrix [Sf ] = (f ([xi, xj ])) is called the LCM matrix associated with f on S. ...
متن کاملGcd Matrices, Posets, and Nonintersecting Paths
We show that with any finite partially ordered set, P , one can associate a matrix whose determinant factors nicely. As corollaries, we obtain a number of results in the literature about GCD matrices and their relatives. Our main theorem is proved combinatorially using nonintersecting paths in a directed graph.
متن کاملNotes on the divisibility of GCD and LCM Matrices
Let S = {x1,x2, . . . ,xn} be a set of positive integers, and let f be an arithmetical function. The matrices (S) f = [ f (gcd(xi,xj))] and [S] f = [ f (lcm[xi,xj])] are referred to as the greatest common divisor (GCD) and the least common multiple (LCM) matrices on S with respect to f , respectively. In this paper, we assume that the elements of the matrices (S) f and [S] f are integers and st...
متن کاملON THE `p NORM OF GCD AND RELATED MATRICES
We estimate the `p norm of the n×n matrix, whose ij entry is (i, j)/[i, j], where r, s ∈ R, (i, j) is the greatest common divisor of i and j and [i, j] is the least common multiple of i and j.
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolutionary Intelligence
سال: 2020
ISSN: 1864-5909,1864-5917
DOI: 10.1007/s12065-020-00504-7